The asymptotically commuting bounded approximation property of Banach spaces
نویسندگان
چکیده
منابع مشابه
On Asymptotically Symmetric Banach Spaces
A Banach space X is asymptotically symmetric (a.s.) if for some C <∞, for all m ∈ N, for all bounded sequences (xj)j=1 ⊆ X, 1 ≤ i ≤ m, for all permutations σ of {1, . . . ,m} and all ultrafilters U1, . . . ,Um on N, lim n1,U1 . . . lim nm,Um ∥∥∥∥ m ∑ i=1 xini ∥∥∥∥ ≤ C lim nσ(1),Uσ(1) . . . lim nσ(m),Uσ(m) ∥∥∥∥ m ∑
متن کاملBest Simultaneous Approximation to Totally Bounded Sequences in Banach Spaces
This paper is concerned with the problem of best weighted simultaneous approximations to totally bounded sequences in Banach spaces. Characterization results from convex sets in Banach spaces are established under the assumption that the Banach space is uniformly smooth.
متن کاملThe Lidskii Trace Property and the Nest Approximation Property in Banach Spaces
For a Banach space X, the Lidskii trace property is equivalent to the nest approximation property; that is, for every nuclear operator on X that has summable eigenvalues, the trace of the operator is equal to the sum of the eigenvalues if and only if for every nest N of closed subspaces of X, there is a net of finite rank operators on X, each of which leaves invariant all subspaces in N , that ...
متن کاملThe Strong Approximation Property and the Weak Bounded Approximation Property
We show that the strong approximation property (strong AP) (respectively, strong CAP) and the weak bounded approximation property (respectively, weak BCAP) are equivalent for every Banach space. This gives a negative answer to Oja’s conjecture. As a consequence, we show that each of the spaces c0 and `1 has a subspace which has the AP but fails to have the strong AP.
متن کاملThe Banach-saks Property of the Banach Product Spaces
In this paper we first take a detail survey of the study of the Banach-Saks property of Banach spaces and then show the Banach-Saks property of the product spaces generated by a finite number of Banach spaces having the Banach-Saks property. A more general inequality for integrals of a class of composite functions is also given by using this property.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2014
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2013.07.028